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Abstract. It is known that the actions of field theories on a noncommutative space-time can be writ-
ten as some modified (we call them θ-modified) classical actions already on the commutative space-time
(introducing a star product). Then the quantization of such modified actions reproduces both space-
time noncommutativity and the usual quantum mechanical features of the corresponding field theory.
In the present article, we discuss the problem of constructing θ-modified actions for relativistic QM.
We construct such actions for relativistic spinless and spinning particles. The key idea is to extract
θ-modified actions of the relativistic particles from path-integral representations of the corresponding
noncommutative field theory propagators. We consider the Klein–Gordon and Dirac equations for the
causal propagators in such theories. Then we construct for the propagators path-integral representations.
Effective actions in such representations we treat as θ-modified actions of the relativistic particles. To
confirm the interpretation, we canonically quantize these actions. Thus, we obtain the Klein–Gordon and
Dirac equations in the noncommutative field theories. The θ-modified action of the relativistic spinning
particle is just a generalization of the Berezin–Marinov pseudoclassical action for the noncommutative
case.

1 Introduction

Recently quantum field theories on a noncommutative
space-time have received a lot of attention, see for ex-
ample [1–4] and references therein. The noncommutative
d+1 space-time can be realized by the coordinate opera-
tors q̂µ, µ= 0, 1, . . . , d, satisfying

[q̂µ, q̂ν ] = iθµν , (1)

where, in the general case, the noncommutativity param-
eters enter in the theory via an antisymmetric matrix θµν .
Obviously, many of principal problems related to the non-
commutativity can be examined already in the noncommu-
tative quantum mechanics (QM). Some of the articles in
this direction consider a generalization of the well-known
QM problems (harmonic oscillator [5, 6], the Landau prob-
lem [7, 8], Lamb shift in the hydrogen atom spectrum [9],
a particle in the Aharonov–Bohm field [10, 11], and a sys-
tem in a central potential [12]) for the noncommuta-
tive case, trying to extract possible observable differences
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with the commutative case. In this connection, the path-
integral representations in nonrelativistic QMwere studied
in [10, 11] for the description of the Aharonov–Bohm effect,
and in [13–17] for the calculations of the simple cases of the
harmonic oscillator [14] and a free particle [17].
One ought to say that the classical actions of field the-

ories on a noncommutative space-time can be written as
some modified classical actions already on the commu-
tative space-time (introducing a star product). Then the
quantization of such modified actions (let us call them
θ-modified actions in what follows) reproduces both space-
time noncommutativity and the usual quantum mechani-
cal features of the corresponding field theory. Considering
QM of one particle (or a system of N particles) with
noncommutative coordinates, one can ask the question
how to construct a θ-modified classical action (with al-
ready commuting coordinates) for the system. As in the
case of field theory, such θ-modified classical actions in
the course of a quantization must reproduce both the
noncommutativity of the coordinates and the usual QM
features of the corresponding finite-dimensional physical
system. For nonrelativistic QM, the latter problem was
solved in [21]; see also [22, 23]. In the relativistic case an
important role is played by the Poincaré group, whose re-
alization on a noncommutative space-time was recently
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constructed as the twisted Poincaré symmetry in [24, 25].
In the present article we discuss the problem of construct-
ing θ-modified actions for relativistic QM. We construct
θ-modified actions for relativistic spinless and spinning
particles. The key idea is to extract θ-modified actions
of the relativistic particles from path-integral represen-
tations of the corresponding noncommutative field the-
ory propagators. We consider θ-modified Klein–Gordon
and Dirac equations with external backgrounds for the
causal propagators. Then, using techniques developed
in [18, 19] for the usual commutative case, we construct
for them path-integral representations. The effective ac-
tions in such path-integral representations we treat as
θ-modified actions of the relativistic particles. To con-
firm this interpretation, we canonically quantize these
actions. Thus, we obtain the above mentioned θ-modified
Klein–Gordon and Dirac equations. The θ-modified ac-
tion of the relativistic spinning particle is a generaliza-
tion of the Berezin–Marinov pseudoclassical action [20]
for the noncommutative case. One ought to say that the
effects of the noncommutativity appear to be essential
only due to the external background. Finally, we con-
sider a noncommutative d-dimensional nonrelativistic QM
with no restrictions on the noncommutativity parame-
ters θµν and a formally arbitrary Hamiltonian. We con-
struct a path-integral representation for the correspond-
ing propagation function and demonstrate that the ef-
fective action in our path-integral representation is just
the θ-modified action for nonrelativistic QM proposed
in [21–23].

2 Path integral representations for particle
propagators in noncommutative field theory

2.1 Spinless case

In field theories the effect of the noncommutativity of the
space-time can be realized by a substitution of the usual
function product by the Weyl–Moyal star product

f(x)∗ g(x) = f(x) exp

{
i

2

←−
∂ µθ

µν−→∂ ν

}
g(x) , (2)

where f(x) and g(x) are two arbitrary infinitely differen-
tiable functions of the commutative variables xµ.
The action of a noncommutative field theory of a scalar

field Φ that interacts with an external electromagnetic field
Aµ(x) reads

Sθscal-field =

∫
dDx
[
(Pµ ∗Φ)∗ (P

µ ∗ Φ̄)+m2ΦΦ̄
]
,

Pµ = i∂µ− gAµ(x) . (3)

The corresponding Euler–Lagrange equation,

δSθscal-field
δΦ̄

= 0 =⇒
[
Pµ ∗P

µ−m2
]
∗Φ= 0 , (4)

being rewritten with the help of (2) takes the form

(P̃ 2−m2)Φ= 0 , P̃ 2 = P̃µP̃
µ , (5)

P̃µ = i∂µ− gAµ

(
xµ+

i

2
θµν∂ν

)
, (6)

and it is an analog of the Klein–Gordon equation for the
noncommutative case. It is supposed that the operator
function of two noncommuting operators in (6) is Weyl
ordered. The propagator in the noncommutative scalar
field theory is the causal Green functionDc(x, y) of (5),

(P̃ 2−m2)Dc(x, y) =−δ(x−y) . (7)

From this point on, we are going to follow the way elab-
orated in [18] to construct a path-integral representation
for the propagator: we consider Dc(x, y) as a matrix elem-
ent of an operator D̂c in a Hilbert space:

Dc(x, y) = 〈x|D̂c|y〉 . (8)

Here |x〉 are the eigenvectors of some self-adjoint and mu-
tually commuting operators x̂µ,

x̂µ = q̂µ+
1

2h̄
θµν p̂ν , (9)

where the operators q̂µ obey the commutation relations (1),
and p̂µ are the momentum operators conjugate to x̂

µ,

[
x̂µ, p̂ν

]
= ih̄δµν , [x̂

µ, x̂ν ] = [p̂µ, p̂ν ] = 0 ,

x̂µ|x〉= xµ|x〉 , 〈x|y〉= δD(x−y) ,

∫
|x〉〈x|dx= I ;

(10)

the change of variables (9) was first used in the context
of noncommutative QM in [9]. Then (7) implies D̂c =
(m2−Π2)−1, where1

Π̂µ =−p̂µ− gAµ(q̂) , [Π̂µ, Π̂ν ] =−igF̂µν ,

F̂µν = ∂µAν(q̂)−∂νAµ(q̂)+ ig[Aµ(q̂), Aν(q̂)] . (11)

Due to the star product property f(q̂)g(q̂) = (f ∗ g)(q̂), we
can represent the operator F̂µν as follows:

F̂µν = F
∗
µν(q̂) ,

F ∗µν(q) = ∂µAν −∂νAµ+ ig(Aµ ∗Aν−Aν ∗Aµ) .
(12)

Using the Schwinger proper-time representation for the
inverse operator, we get

Dc =Dc(xout, xin) = i

∫ ∞
0

〈xout| exp

[
−
i

h̄
Ĥ(λ)

]
|xin〉dλ ,

(13)

Ĥ(λ) = λ(m2−Π2) .

1 Here and in what follows Π2 =ΠµΠ
µ and so on.
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Here and in what follows the infinitesimal factor −iε is in-
cluded inm2. Doing finally a discretization, similar to that
in [18], we get a path-integral representation for the propa-
gator (13):

Dc = i

∫ ∞
0

dλ0

∫ xout
xin

Dx

∫
λ0

Dλ

×

∫
DpDπ exp

{
i

h̄

[
Sθscal-part+SGF

]}
, (14)

where

Sθscal-part =

∫ 1
0

[
λ(P2−m2)+pµẋ

µ
]
dτ ,

SGF =

∫ 1
0

πλ̇dτ ,

Pµ =−pµ− gAµ

(
xµ−

1

2h̄
θµνpν

)
,

ẋ=
dx

dτ
, λ̇=

dλ

dτ
. (15)

The functional integration in (14) goes over trajectories
xµ(τ), pµ(τ), λ(τ), and π(τ), parametrized by some invari-
ant parameter τ ∈ [0, 1] and obeying the boundary condi-
tions x(0) = xin, x(1) = xout, λ(0) = λ0.
Since the momenta are involved in the arguments of the

electromagnetic potentials Aµ, an integration over the mo-
menta in the representation (14) is difficult to perform in
the general case. On the other hand, we can go over from x
to new coordinates q,

qµ = xµ−
1

2h̄
θµνpν , (16)

which correspond in a sense to the noncommutative opera-
tors q̂µ (1). Then

Dc = i

∫ ∞
0

dλ0

∫ xout−θp/2h̄
xin−θp/2h̄

Dq

∫
λ0

Dλ

×

∫
DpDπ exp

{
i

h̄
Sθscal-part+SGF

}
,

Sθscal-part =

∫ 1
0

{
λ
[
(pµ+ gAµ(q))

2−m2
]
+pµq̇

µ

+
1

2h̄
ṗµθ

µνpν

}
dτ . (17)

Thus, we get rid from the above mentioned difficulty but
a new one has appeared. The action Sθscal-part in (17) con-
tains an “inconvenient” term ṗµθ

µνpν/2h̄. Here the possi-
bility to integrate over the momenta is related to the study
of the structure of θµν matrix and with a subsequent tran-
sition to some Darboux coordinates.
The representation (17) can be treated as a Hamilton-

ian path integral for the scalar particle propagator in the
noncommutative field theory. The exponent in the inte-
grand (17) can be considered as an effective and non-
degenerate Hamiltonian action of a scalar particle in a non-
commutative space-time. It consists of two parts. The first

one SGF can be treated as a gauge fixing term and corres-
ponds, in fact, to the gauge condition λ̇= 0. The rest part
of the effective action Sθscal-part can be treated as θ-modi-
fication of the usual Hamiltonian action of a spinless rela-
tivistic particle in the commutative case. This action dif-
fers from the corresponding commutative case [18] by the
term 1

2h̄ ṗµθ
µνpν .

2.2 Spinning particle

Consider a θ-modified action of noncommutative field the-
ory of a spinor field Ψ that interacts with an external
electromagnetic background Aµ. Being written in com-
muting D-dimensional Minkowski coordinates xµ, µ =
0, 1, . . . , D−1, the action reads

Sθspinor-field =

∫
dxDΨ̄ ∗

(
Pµγ

µ+m
)
∗Ψ , (18)

where γµ are gammamatrices inD dimensions, [γµ, γν ]+ =
2ηµν . In this article, we consider D to be even, D = 2d,
for simplicity, and we consider it a generalization of 4-
dimensional Minkowski space; the odd case can be con-
sidered in the same manner following the ideas of [19].
As is known [28], in even dimensions a matrix representa-
tion of the Clifford algebra with dimensionality dim γµ =
2d always exists. In other words, γµ are 2d× 2d matri-
ces. In such dimensions one can introduce another matrix,
γD+1 = rγ0γ1 . . . γD−1, where r = 1, if d is even, and r = i,
if d is odd, which anticommutes with all γµ (analog of γ5 in
four dimensions), [γD+1, γµ]+ = 0 and (γ

D+1)2 =−1. The
Euler–Lagrange equations

δSθspinor-field

δΨ̄
= 0−→

(
Pµγ

µ+m
)
∗Ψ = 0 , (19)

being rewritten with the help of (2), take the form

(
P̃µγ

µ−m
)
Ψ = 0 , P̃µ = i∂µ− gAµ

(
xµ+

i

2
θµν∂ν

)

(20)

and represent an analog of the Dirac equation for the non-
commutative case. The propagator of the noncommutative
spinor field theory is the causal Green function Gc(x, y)
of (20),

(
P̃µγ

µ−m
)
Gc(x, y) =−δD(x−y) . (21)

Following [18, 19], we pass to a θ-modified Dirac op-
erator that is homogeneous in the γ matrices. Indeed, let
us rewrite (21) in terms of the propagator G̃c(x, y) trans-
formed by γD+1,

G̃c(x, y) =Gc(x, y)γD+1 ,(
P̃µγ̃

µ−mγD+1
)
G̃c(x, y) = δD(x−y) , (22)

where γ̃µ = γD+1γµ. The matrices γ̃µ have the same
commutation relations as the initial ones without tilde,
[γ̃µ, γ̃ν ]+ = 2η

µν , and they anticommute with the matrix
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γD+1. The set ofD+1 gamma matrices γ̃ν and γD+1 form
a representation of the Clifford algebra in an odd number,
2d+1, of dimensions. Let us denote such matrices via Γn,

Γn =

{
γ̃µ , n= µ= 0, . . . , D−1 ,

γD+1 , n=D
(23)

[Γ k, Γn]+ = 2η
kn ,

ηkn = diag(1,−1, . . . ,−1︸ ︷︷ ︸
D+1

) , k, n= 0, . . . , D .

In terms of these matrices (22) takes the form

P̃nΓ
nG̃c(x, y) = δD(x−y) ,

P̃µ = i∂µ− gAµ

(
xµ+

i

2
θµν∂ν

)
, P̃D =−m.

(24)

Now again, similar to (8), we present G̃c(x, y) as a matrix
element of an operator Ĝc (in the coordinate representa-
tion (10)),

G̃cab(x, y) = 〈x|Ĝ
c
ab|y〉 , a, b= 1, 2, . . . , 2

d , (25)

where the spinor indices a, b are written here explicitly for
clarity and will be omitted hereafter. Equation (24) im-
plies Ŝc = (ΠnΓ

n)−1, where Πµ are defined in (11), and
ΠD =−m. Using a generalization of the Schwinger proper-
time representation proposed in [18], we write the Green
function (25) in the form

G̃c = G̃c(xout, xin) =

∫ ∞
0

dλ

∫
〈xout|e

−iĤ(λ,χ)|xin〉dχ ,

(26)

Ĥ(λ, χ) = λ

(
m2−Π2+

ig

2
FµνΓ

µΓ ν
)
+ΠnΓ

nχ .

Similar to [18], we present the matrix element enter-
ing in the expression (26) by means of a Hamiltonian path
integral

G̃c = exp

(
iΓn

∂l

∂εn

)∫ ∞
0

dλ0

∫
dχ0

∫
λ0

Dλ

∫
χ0

Dχ

×

∫ xout
xin

Dx

∫
Dp

∫
Dπ

∫
Dν

∫
ψ(0)+ψ(1)=ε

Dψ

× exp

{
i

∫ 1
0

[
λ
(
P2−m2+2igF ∗µνψ

µψν
)
+2iPnψ

nχ

−iψnψ̇
n+pµẋ

µ+πλ̇+νχ̇
]
dτ +ψn(1)ψ

n(0)
}∣∣∣
ε=0
.

(27)

Here εn are odd variables, anticommuting with the Γ -ma-
trices, and ∂l/∂ε

n denotes the left Grassmann derivative,

Pµ =−pµ− gAµ

(
xµ−

1

2h̄
θµνpν

)
, PD =−m,

F ∗µν = F
∗
µν

(
xµ−

1

2h̄
θµνpν

)
,

the function F ∗µν(q) is defined in (12), and the integra-
tion goes over even trajectories x(τ), p(τ), λ(τ), π(τ), and
odd trajectories ψn(τ), χ(τ), ν(τ), parametrized by some
invariant parameter τ ∈ [0, 1] and obeying the boundary
conditions x(0) = xin, x(1) = xout, λ(0) = λ0, χ(0) = χ0.
Performing the change of variables (16) in (27), we ob-

tain another representation for G̃c,

G̃c = exp

(
iΓn

∂l

∂εn

)∫ ∞
0

dλ0

∫
dχ0

∫
λ0

Dλ

∫
χ0

Dχ

×

∫ ∞
−∞
Dp

∫ xout−θp/2h̄
xin−θp/2h̄

Dq

∫
Dπ

∫
Dν

∫
ψ(0)+ψ(1)=ε

Dψ

× exp
{
i
[
Sθspin-part+SGF

]
+ψn(1)ψ

n(0)
}∣∣
ε=0
, (28)

where

Sθspin-part =

∫ 1
0

[
λ
(
(pµ+ gAµ)

2−m2+2igF ∗µνψ
µψν
)

+2i(pµ+ gAµ(q))ψ
µχ−2imψDχ

− iψnψ̇
n+pµq̇

µ+
1

2h̄
ṗµθ

µνpν

]
dτ , (29a)

SGF =

∫ 1
0

(πλ̇+νχ̇)dτ . (29b)

Note that in [29] an attempt was made to construct the
path integral representation of the Green function of the
noncommutative Dirac equation. However, the considera-
tion was perturbative in θ (taking into account only the
first-order perturbation). As a consequence the authors did
not obtain the corresponding action (29a); moreover, the
essential term ṗµθ

µνpν/2h̄ was missing.

3 Pseudoclassical action of spinning particle
in noncommutative space-time

Similar to the spinless case, the exponent in the inte-
grand (28) can be considered as an effective and non-
degenerate Hamiltonian action of a spinning particle in
noncommutative space-time. It consists of two principal
parts. The first one SGF with derivatives of λ and χ can
be treated as a gauge fixing term, which corresponds to
the gauge conditions λ̇= χ̇= 0. The rest part Sθspin-part can
be treated as a gauge invariant action of a spinning par-
ticle in noncommutative space-time. The action Sθspin-part
is a θ-modification of the Hamiltonian form of the Berezin–
Marinov action [20]. It will be studied and quantized below
to justify such an interpretation.
One can easily verify that Sθspin-part is reparametriza-

tion invariant. The explicit form of supersymmetry trans-
formations, which generalize ones for the Berezin–Marinov
action, is not so easily to derive. Their presence will be
proved in an indirect way. Namely, we are going to prove
the existence of two primary first-class constraints in the
corresponding Hamiltonian formulation.
Let us consider Sθspin-part as a Lagrangian action with

generalized coordinatesQA = (q
µ, pµ), A= (ζ, µ), ζ = 1, 2,
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Q1µ = q
µ, Q2µ = pµ; χ, ψ, and λ, and let us perform

a Hamiltonization of such an action. To this end, we intro-
duce the canonical momenta P conjugate to the general-
ized coordinates as follows:

PQA =
∂L

∂Q̇A
= JA(q) , J1µ = pµ , J2µ =

1

2h̄
θµνpν ,

Pλ =
∂L

∂λ̇
= 0 , Pχ =

∂rL

∂χ̇
= 0 , Pn =

∂rL

∂ψ̇n
=−iψn .

(30)

It follows from (30) that there exist primary constraints
Φ(1) = 0,

Φ
(1)
l =

⎧⎪⎪⎨
⎪⎪⎩
Φ
(1)
1A = PA−JA(q) ,

Φ
(1)
2 = Pλ , Φ

(1)
3 = Pχ ,

Φ
(1)
4n = Pn+ iψn .

(31)

The Poisson brackets of the primary constraints are

{
Φ
(1)
1A, Φ

(1)
1B

}
=ΩAB =

(
0 I

−I θ/h̄

)
,
{
Φ
(1)
4n , Φ

(1)
4m

}
= 2iηnm ,

{
Φ
(1)
1A, Φ

(1)
4n

}
=
{
Φ
(1)
1A, Φ

(1)
2,3

}
=
{
Φ
(1)
4n , Φ

(1)
2,3

}
= 0 , (32)

where θ = θµν , I is a D×D unit matrix, and 0 denotes
a D×D zero matrix. Note that detΩAB = 1, and

ωAB =Ω−1AB =

(
θ/h̄ −I
I 0

)
.

Now we construct the total Hamiltonian H(1), accord-
ing to the standard procedure [33]. Thus, we obtain

H(1) =H+ΛlΦ
(1)
l ,

H =−λ
[
(pµ+ gAµ)

2−m2+2igF ∗µν(q)ψ
µψν
]

+2iχ
(
(pµ+ gAµ)ψ

µ−mψD
)
, (33)

where Λl are the corresponding Lagrangian multipliers.

The consistency conditions Φ̇
(1)
1A,4n = {Φ

(1)
1A,4n,H

(1)} = 0

for the primary constraints Φ
(1)
1A and Φ

(1)
4n allow us to fix the

Lagrange multipliers λ1A and λ4n. The consistency condi-
tions for the constraints Φ

(1)
2,3 imply secondary constraints

Φ
(2)
1,2 = 0,

Φ
(2)
1 = (pµ+ gAµ)ψ

µ−mψD = 0 , (34)

Φ
(2)
2 = (pµ+ gAµ)

2−m2+2igF ∗µνψ
µψν = 0 , (35)

and there are no other constraints. Thus, the Hamiltonian
H appears to be proportional to constraints, as always in
the case of a reparametrization invariant theory,

H = 2iχΦ
(2)
1 −λΦ

(2)
2 .

No more secondary constraints arise from the Dirac pro-
cedure, and the Lagrange multipliers λ2 and λ3 remain
undetermined, in perfect correspondence with the fact that

the number of gauge transformations parameters equals
two for the theory in question.
One can go over from the initial set of constraints

(Φ(1), Φ(2)) to the equivalent one (Φ(1), T ), where:

T = Φ(2)+
∂Φ(2)

∂qA
ωABΦ

(1)
1B+

i

2

∂rΦ

∂ψn

(2)

Φ
(1)
4n . (36)

The new set of constraints can be explicitly divided in a set
of first-class constraints, which is (Φ

(1)
2,3, T ) and in a set of

second-class constraints, which is (Φ
(1)
1A, Φ

(1)
4n ).

Now we consider an operator quantization. To this end
we perform a partial gauge fixing, imposing gauge condi-
tions ΦG1,2 = 0 to the primary first-class constraints Φ

(1)
1,2,

ΦG1 = χ= 0 , Φ
G
2 = λ= 1/m . (37)

One can check that the consistency conditions for the
gauge conditions (37) lead to fixing the Lagrange mul-
tipliers λ2 and λ3. Thus, at this stage we reduced our
Hamiltonian theory to one with the first-class constraints
T and second-class ones ϕ = (Φ(1), ΦG). Then, we apply
the so called Dirac method for systems with first-class con-
straints [34], which, being generalized to the presence of
second-class constraints, can be formulated as follows: the
commutation relations between operators are calculated
according to the Dirac brackets with respect to the second-
class constraints only; second-class constraints as opera-
tors equal zero; first-class constraints as operators are not
zero but are considered in the sense of restrictions on state
vectors. All the operator equations have to be realized in
a Hilbert space.
The subset of the second-class constraints (Φ

(1)
2,3, Φ

G)
has a special form [33],2 so that one can use it for eliminat-
ing the variables λ, Pλ, χ and Pχ from the consideration;
and then, for the rest of the variables q, p and ψn the Dirac
brackets with respect to the constraints ϕ reduce to ones
with respect to the constraints Φ

(1)
1A and Φ

(1)
4n only and can

easily be calculated,

{QA, QB}D(Φ(1)) = ω
AB , {ψn, ψm}D(Φ(1)) =

i

2
ηnm ,

while all other Dirac brackets vanish. Thus, the commu-
tation relations for the operators q̂µ, p̂µ, ψ̂

n, which corres-
pond to the variables qµ, pµ, ψ

n respectively, are[
q̂µ, p̂ν

]
−
= ih̄ωµ,D+ν = ih̄δµν ,

[q̂µ, q̂ν ] = ih̄ωµν = iθµν , [p̂µ, p̂ν ] = 0 ,

[ψ̂m, ψ̂n]+ = i{ψ
m, ψn}D(Φ(1)) =−

1

2
ηmn . (38)

Besides, the following operator equations hold:

Φ̂
(1)
1A = P̂A−JA(Q̂) , Φ̂

(1)
4n = P̂n+ iψ̂n = 0 . (39)

2 If a part of all the second-class constraints of a theory is
a set of second-class constraints of a special form, we can use
the latter to reduce the phase-space such that the initial Dirac
brackets are reduced to ones in the reduced phase-space with
respect to the rest of second-class constraints.
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Taking that into account, one can construct a realization
of the commutation relations (38) in a Hilbert space whose
elements Ψ are 2d-component columns dependent only on
x, such that

q̂µ =

(
xµ+

i

2
θµν∂ν

)
I , p̂µ =−i∂µI , ψ̂

n =
i

2
Γn ,

(40)

where I is the 2d× 2d unit matrix, and Γn are gamma
matrices; see (23). The first-class constraints T̂ as opera-
tors have to annihilate physical vectors; by virtue of (39)
and (36) that implies the equations

Φ̂
(2)
1 Ψ = 0 , Φ̂

(2)
2 Ψ = 0 , (41)

where Φ̂
(2)
1,2 are operators that correspond to the con-

straints (34) and (35). Taking into account the realizations
of the commutation relations (38), one easily can see that
the first equation of (41) takes the form of the θ-modified
Dirac equation,

(
P̃µγ̃

µ−mγD+1
)
Ψ = 0⇐⇒

(
Pµγ

µ+m
)
∗Ψ = 0 , (42)

Since Φ̂
(2)
2 = (Φ̂

(2)
1 )

2, the second equation of (41) is
a consequence of the first one.
Thus, we have constructed a θ-modification of the

Berezin–Marinov action (29a) that, being quantized, leads
to a quantum theory based on the θ-modified Dirac
equation.
Note that space-time non-commutativity [q̂0, q̂i] = iθ0i

can be obtained also from the canonical quantization of
the conventional Lagrangian action of a relativistic spin-
less particle by imposing the special gauge condition Φgf =
x0+ θ0ipi− τ = 0 [35].

4 Path integral in nonrelativistic quantum
mechanics on a noncommutative space

In this section, we construct a path-integral representa-
tion for the propagation function (a symbol of the evolu-
tion operator) in nonrelativistic QM on a noncommutative
space.We compare our result with some previous construc-
tions and use it to extract a θ-modified first-order classical
Hamiltonian action for such a system.
We consider a d-dimensional nonrelativistic QM with

basic canonical operators of coordinates q̂k and momenta
p̂j , k, j = 1, . . . , d that obey the following commutation
relations:

[q̂k, q̂j ] = iθkj ,
[
q̂k, p̂j

]
= ih̄δkj , [p̂k, p̂j ] = 0 . (43)

It is supposed that the nonvanishing commutation rela-
tions for the coordinate operators in (43) have emerged
from the noncommutative properties of the position space.
The time evolution of the system under consideration is
governed by a self-adjoint Hamiltonian Ĥ. We believe that
behind such a QM there exists a classical theory with

a θ-modified action (which we are going to restore in what
follows), such that the quantization of this action leads to
the QM.
In conventional nonrelativistic QM, one constructs

a path-integral representation for matrix elements (in a co-
ordinate representation) of the evolution operator Û(t, t′).
In the QM under consideration, we also start with such an
operator. It obeys the Schrödinger equation and for time
independent Ĥ (which we consider for simplicity in what
follows) has the form

Û(t′, t) = exp

{
−
i

h̄
Ĥ(t′− t)

}
. (44)

Since the coordinate operators q̂ do not commute,
they do not possess a common complete set of eigenvec-
tors. Therefore, there is no q-coordinate representation
and one cannot speak of matrix elements of the evo-
lution operator in such a representation. Consequently,
one cannot define a probability amplitude of a transition
between two points in the position space. Nevertheless,
one can consider other types of matrix elements of the
evolution operator that are probability amplitudes (evo-
lution functions) and that can be represented via path
integrals. Below, we consider two types of such matrix
elements,

Gp = 〈p
out|Û(tout, tin)|p

in〉 ,

Gx = 〈xout|Û(tout, tin)|xin〉 . (45)

In (45) |p〉 is a complete set of eigenvectors of commuting
operators p̂,

p̂j |p〉= pj |p〉 , 〈p|p
′〉= δ(p−p′) ,∫

|p〉〈p|dp= I , dp=
∏
i

dpi ,

〈p|x〉=
1

(2πh̄)d/2
exp

{
−
i

h̄
pix

i

}
,

〈p|x̂|p′〉= ih̄
∂

∂p
〈p|p′〉 , (46)

and |x〉 is a complete set of eigenvectors of some commut-
ing operators x̂k canonically conjugate to p̂. We chose these
operators as follows3:

x̂k = q̂k+
θkj p̂j

2h̄
, [x̂k, x̂j ] = 0 ,

[
x̂k, p̂j

]
= ih̄δkj ,

x̂µ|x〉= xµ|x〉 , 〈x|y〉 = δD(x−y) ,∫
|x〉〈x|dx = I , dx=

∏
i

dxi . (47)

First, let us construct a path-integral representation
for the evolution function Gp. To this end, as usual, we
divide the time interval T = tout− tin in N equal parts
∆t= T/N by means of the points tk, k = 1, . . . , N−1, such

3 For the first time the commuting operators x̂k were intro-
duced in [9].
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that tk = tin+k∆t. Using the group property of the evolu-
tion operator and the completeness relation (see (46)) for
the set |p〉, one can write

Gp = lim
N→∞

∫ ∞
−∞
dp(1) . . . dp(N−1)

×
N∏
k=1

〈p(k)| exp

{
−
i

h̄
Ĥ(tk− tk−1)

}
|p(k−1)〉 ,

(48)

where p(0) = pin, p(N) = pout, and p(k) = (p
(k)
i ). Bearing in

mind the limiting processN →∞ or ∆t→ 0 and using the
completeness relation (47) for the eigenvectors |x〉, one can
approximately calculate the matrix element from (48),

〈p(k)| exp

{
−
i

h̄
Ĥ∆t

}
|p(k−1)〉

≈

∫
dx(k)〈p

(k)|1−
i

h̄
Ĥ∆t|x(k)〉〈x(k)|p

(k−1)〉 ,

(49)

where x(k) = (x
i
(k)) and dx(k) =

∏
i dx

i
(k). A result of this

calculation can be expressed in terms of a classical Hamil-
tonian H; however, in the general case, it will depend on
the choice of the correspondence rule between the classi-
cal function and quantum operator. For our calculations
we choose the Weyl ordering. In this case the matrix elem-
ent (49) will take the form

∫
dx(k)
(2πh̄)d

exp

{
i

h̄

[
−xi(k)

p
(k)
i −p

(k−1)
i

∆t

−H

(
x(k)−

θp(k)′

2h̄
, p(k)′

)]
∆t+O(∆t2)

}
,

where p(k)′ = p(k)+p(k−1)

2 , and H
(
x− θp2h̄ , p

)
is the Weyl

symbol of the operator Ĥ. Using the above formula and
taking the limit N →∞ in the integral (48), we get for Gp
the following path-integral representation:

Gp =

∫ pout
pin

Dp

∫
Dx

× exp

{
i

h̄

∫
dt

[
−xj ṗ

j−H

(
x−
θp

2h̄
, p

)]}
.

(50)

In the same manner, one can construct a path-integral
representation for the evolution function Gx, which, is

Gx =

∫
Dp

∫ xout
xin

Dx

× exp

{
i

h̄

∫
dt

[
pj ẋ
j−H

(
x−
θp

2h̄
, p

)]}
. (51)

Let us pass to the integration over trajectories q = x−
θp
2h̄ in the path integrals (50) and (51). Then we get

Gx =

∫
Dp

∫ xout−θp/2h̄
xin−θp/2h̄

Dq exp

{
i

h̄
Sθnonrel

}
, (52)

Gp =

∫ pout
pin

Dp

∫
Dq exp

{
i

h̄
S̃θnonrel

}
, (53)

where

Sθnonrel =

∫
dt
[
pj q̇
j−H(p, q)+ ṗjθ

jipi/2h̄
]
, (54)

S̃θnonrel =

∫
dt
[
−qj ṗ

j−H(p, q)−pjθ
jiṗi/2h̄

]
. (55)

One ought to stress that the actions Sθnonrel and S̃
θ
nonrel

differ by a total time derivative. The additional term
in (54) reproduces, in 3D the one proposed in [26], and in
2D that put forward in [21].
The path integral (52) is a generalization of the result

obtained in [14] for an arbitrary nonrelativistic system and
without any restrictions on the matrix θ. One ought to say
that path integrals on the noncommutative plane for ma-
trix elements of the evolution operator in coherent state
representations were studied in [16, 17]. They have specific
forms that make it difficult to compare with our results.
In the conventional “commutative” nonsingular QM

the action Sθnonrel (at θ = 0) is just the Hamiltonian action
of the classical system under consideration. The canonical
quantization of this action reproduces the initial QM of the
system. In the noncommutative case this action is modified
by a new term ṗkθ

kjpj/2h̄. One can treat the action (54)
as a θ-modified Hamiltonian action of the classical system
under consideration (see the introduction). This interpre-
tation can be justified by the canonical quantization of the
action [21–23].
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